会议时间节点
- August 15 – August 30, 2020: Authors register on the AAAI web site
- September 1, 2020: Electronic abstracts due at 11:59 PM UTC-12 (anywhere on earth)
- September 9, 2020: Electronic papers due at 11:59 PM UTC-12 (anywhere on earth)
- September 29, 2020: Abstracts AND full papers due for revisions of rejected NeurIPS/EMNLP submissions by 11:59 PM UTC-12 (anywhere on earth)
- AAAI-21 Reviewing Process: Two-Phase Reviewing and NeurIPS/EMNLP Fast Track Submissions
- November 3-5, 2020: Author Feedback Window (anywhere on earth)
- December 1, 2020: Notification of acceptance or rejection
注意事项
- 两次审稿:今年aaai采取两阶段审稿,每个阶段都有2位审稿人。10.13会拒掉一部分不合格的稿件,避免低质量的投稿影响效率。
- 文章篇幅:7+2,两页引文,和之前略有不同。
- 会议地址:今年疫情缘故,米帝估计过年也好不了,所以直接宣布线上会议了。
- 论文拒稿重投:aaai给NeurIPS和EMNLP拒稿论文 还提供了重投的通道,专门等人家捡漏的....这...。万一运气不好实力不佳,第一轮拒稿了,也才十月中旬,可以修改转投11月的CVPR2021,斐波那契投稿法安排上(无缝衔接难怪水多)。
- 论文版式:author kit还没开放下载,到时候按照他的格式改就行。
接收论文列表(共84篇)
26: EfficientDeRain: Learning Pixel-‐Wise Dilation Filtering for High-‐Efficiency Single-‐Image Deraining
Qing Guo, Jingyang Sun, Felix Juefei-‐Xu, Lei Ma, Xiaofei Xie, Wei Feng, Yang Liu, Jianjun Zhao
416: Robust Reinforcement Learning: A Case Study in Linear Quadratic Regulation
Bo Pang, Zhong-‐Ping Jiang
676: Scalable First-‐Order Methods for Robust MDPs
Julien Grand Clement, Christian Kroer
710: Maintenance of Social Commitments in Multiagent Systems
Pankaj Telang, Munindar Singh, Neil Yorke-‐Smith
1137: Self-‐Supervised Attention-‐Aware Reinforcement Learning
Haiping Wu, Khimya Khetarpal, Doina Precup
1140: ePointDA: An End-‐to-‐End Simulation-‐to-‐Real Domain Adaptation Framework for LiDAR Point Cloud Segmentation
Sicheng Zhao, Yezhen Wang, Bo Li, Bichen Wu, Yang Gao, Pengfei Xu, Trevor Darrell, Kurt Keutzer
1169: Hierarchical Reinforcement Learning for Integrated Recommendation
Ruobing Xie, Shaoliang Zhang, Rui Wang, Feng Xia, Leyu Lin
1250: TDAF: Top-‐Down Attention Framework for Vision Tasks
Bo Pang, Yizhuo Li, Jiefeng Li, Muchen Li, Hanwen Cao, Cewu Lu
2088: Combining Reinforcement Learning with Lin-‐Kernighan-‐Helsgaun Algorithm for the Traveling Salesman Problem
Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, Chumin Li
2136: Learning to Reweight Imaginary Transitions for Model-‐Based Reinforcement Learning
Wenzhen Huang, Qiyue Yin, Junge Zhang, KAIQI HUANG
2294: Exploration-‐Exploitation in Multi-‐Agent Learning: Catastrophe Theory Meets Game Theory
Stefanos Leonardos, Georgios Piliouras
2431: Advice-‐Guided Reinforcement Learning in a Non-‐Markovian Environment
Daniel Neider, Jean-‐Raphaël Gaglione, Ivan Gavran, Ufuk Topcu, Bo Wu, Zhe Xu
2441: Content Masked Loss: Human-‐Like Brush Stroke Planning in a Reinforcement Learning Painting Agent
Peter Schaldenbrand, Jean Oh
2453: Metrics and Continuity in Reinforcement Learning
Charline Le Lan, Marc G. Bellemare, Pablo Samuel Castro
2666: Synthesis of Search Heuristics for Temporal Planning via Reinforcement Learning
Andrea Micheli, Alessandro Valentini
2971: Lipschitz Lifelong Reinforcement Learning
Erwan Lecarpentier, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, Michael L. Littman
3011: Exact Reduction of Huge Action Spaces in General Reinforcement Learning
Sultan Javed Majeed, Marcus Hutter
3094: Visual Tracking via Hierarchical Deep Reinforcement Learning
Dawei Zhang, Zhonglong Zheng, Riheng Jia, Minglu Li
3193: Adaptive Prior-‐Dependent Correction Enhanced Reinforcement Learning for Natural Language Generation
Wei Cheng, Ziyan Luo, Qiyue Yin
3279: A Hybrid Stochastic Gradient Hamiltonian Monte Carlo Method
Chao Zhang, Zhijian Li, Zebang Shen, Jiahao Xie, Hui Qian
3412: Sequential Generative Exploration Model for Partially Observable Reinforcement Learning
Haiyan Yin, Jianda Chen, Sinno Pan, Sebastian Tschiatschek
3679: Learning Task-‐Distribution Reward Shaping with Meta-‐Learning
Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, Jun Zhu
3727: Visual Comfort Aware-‐Reinforcement Learning for Depth Adjustment of Stereoscopic 3D Images
Hak Gu Kim, Minho Park, Sangmin Lee, Seongyeop Kim, Yong Man Ro
3812: Scheduling of Time-‐Varying Workloads Using Reinforcement Learning
Shanka Subhra Mondal, Nikhil Sheoran, Subrata Mitra
4386: DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems
Xiangyu Zhao, Changsheng Gu, Haoshenglun Zhang, Xiwang Yang, Xiaobing Liu, Jiliang Tang , Hui Liu
4719: Complexity and Algorithms for Exploiting Quantal Opponents in Large Two-‐Player Games
David Milec, Jakub Cerny, Viliam Lisy, Bo An
4999: Bayesian Optimized Monte Carlo Planning
John Mern, Anil Yildiz, Zachary Sunberg, Tapan Mukerji, Mykel Kochenderfer
5008: Towards Effective Context for Meta-‐Reinforcement Learning: An Approach Based on Contrastive Learning
Haotian Fu, Hongyao Tang, Jianye Hao, Chen Chen, Xidong Feng, Dong Li, Wulong Liu
5012: Improved POMDP Tree Search Planning with Prioritized Action Branching
John Mern, Anil Yildiz, Lawrence Bush, Tapan Mukerji, Mykel Kochenderfer
5046: Anytime Heuristic and Monte Carlo Methods for Large-‐Scale Simultaneous Coalition Structure Generation and Assignment
Fredrik Präntare, Fredrik Heintz, Herman Appelgren
5101: Reinforcement Learning with Trajectory Feedback
Yonathan Efroni, Nadav Merlis, Shie Mannor
5167: Encoding Human Domain Knowledge to Warm Start Reinforcement Learning
Andrew Silva, Matthew Gombolay
5284: GLIB: Efficient Exploration for Relational Model-‐Based Reinforcement Learning via Goal-Literal Babbling
Rohan Chitnis, Tom Silver, Joshua Tenenbaum, Leslie Kaelbling, Tomas Lozano-‐Perez
5303: Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size
Christoph Hertrich, Martin Skutella
5320: WCSAC: Worst-‐Case Soft Actor Critic for Safety-‐Constrained Reinforcement Learning
Qisong Yang, Thiago D. Simão, Simon H Tindemans, Matthijs T. J. Spaan
5334: Queue-‐Learning: A Reinforcement Learning Approach for Providing Quality of Service
Majid Raeis, Ali Tizghadam, Alberto Leon-‐Garcia
5546: Improving Sample Efficiency in Model-‐Free Reinforcement Learning from Images
Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, Rob Fergus
5657: A Sample-‐Efficient Algorithm for Episodic Finite-‐Horizon MDP with Constraints
Krishna C Kalagarla, Rahul Jain, Pierluigi Nuzzo
5712: Resilient Multi-‐Agent Reinforcement Learning with Adversarial Value Decomposition
Thomy Phan, Lenz Belzner, Thomas Gabor, Andreas Sedlmeier, Fabian Ritz, Claudia Linnhoff-Popien
5906: Domain Adaptation in Reinforcement Learning via Latent Unified State Representation
Jinwei Xing, Takashi Nagata, Kexin Chen, Xinyun Zou, Emre Neftci, Jeffrey Prof. Krichmar
5930: Uncertainty-‐Aware Policy Optimization: A Robust, Adaptive Trust Region Approach
James Queeney, Ioannis Paschalidis, Christos G. Cassandras
5971: Deep Recurrent Belief Propagation Network for POMDPs
Yuhui Wang, Xiaoyang Tan
6031: Inverse Reinforcement Learning from Like-‐Minded Teachers
Ritesh Noothigattu, Tom Yan, Ariel D Procaccia
6049: FontRL: Chinese Font Synthesis via Deep Reinforcement Learning
Yitian Liu, Zhouhui Lian
6070: Coordination between Individual Agents in Multi-‐Agent Reinforcement Learning
Yang Zhang, Qingyu Yang, Dou An, Chengwei Zhang
6211: Constrained Risk-‐Averse Markov Decision Processes
Mohamadreza Ahmadi, Ugo Rosolia, Michel Ingham, Richard M Murray, Aaron Ames
6310: A Deep Reinforcement Learning Approach to First-‐Order Logic Theorem Proving
Maxwell Crouse, Ibrahim Abdelaziz, Bassem Makni, Spencer Whitehead, Cristina Cornelio, Pavan Kapanipathi, Kavitha Srinivas, Veronika Thost, Michael Witbrock, Achille Fokoue
6343: The Maximin Support Method: An Extension of the D’Hondt Method to Approval-‐Based Multiwinner Elections
Luis Sanchez-‐Fernandez, Norberto Fernández García, Jesús Fisteus, Markus Brill
6428: Reinforcement Learning Based Multi-‐Agent Resilient Control: From Deep Neural Networks to an Adaptive Law
Jian Hou, Fangyuan Wang, Lili Wang, Zhiyong Chen
6610: Learning Game-‐Theoretic Models of Multiagent Trajectories Using Implicit Layers
Philipp Geiger, Christoph-‐Nikolas Straehle
6977: DeepTrader: A Deep Reinforcement Learning Approach for Risk-‐Return Balanced Portfolio Management with Market Conditions Embedding
Zhicheng Wang, Biwei Huang, Shikui Tu, Kun Zhang, Lei Xu
7018: Reinforcement Learning with a Disentangled Universal Value Function for Item Recommendation
Kai Wang, Zhene Zou, Qilin Deng, Jianrong Tao, Runze Wu, Changjie Fan, Liang Chen, Peng Cui
7394: Learning Model-‐Based Privacy Protection under Budget Constraints
Junyuan Hong, Haotao Wang, Zhangyang Wang, Jiayu Zhou
7572: Towards Fully Automated Manga Translation
Ryota Hinami, Shonosuke Ishiwatari, Kazuhiko Yasuda, Yusuke Matsui
7657: The Value-‐Improvement Path: Towards Better Representations for Reinforcement Learning
Will Dabney, Andre Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G. Bellemare, David Silver
7812: Text-‐Based RL Agents with Commonsense Knowledge: New Challenges, Environments and Baselines
Keerthiram Murugesan, Mattia Atzeni, Pavan Kapanipathi, Pushkar Shukla, Sadhana Kumaravel, Gerald Tesauro, Kartik Talamadupula, Mrinmaya Sachan, Murray Campbell
7911: DSLR : Dynamic to Static Lidar Scan Reconstruction Using Adversarially Trained Auto Encoder
Prashant Kumar, Sabyasachi Sahoo, Vanshil Shah, Vineetha Kondameedi, Abhinav Jain, Akshaj Verma, Chiranjib Bhattacharyya, Vinay Vishwanath
7936: Dynamic Automaton-‐Guided Reward Shaping for Monte Carlo Tree Search
Alvaro Velasquez, Brett Bissey, Lior Barak, Andre Beckus, Ismail Alkhouri, Daniel Melcer, George Atia
7952: Sample Efficient Reinforcement Learning with REINFORCE
Junzi Zhang, Jongho Kim, Brendan O'Donoghue, Stephen Boyd
8029: Reinforcement Learning of Sequential Price Mechanisms
Gianluca Brero, Alon Eden, Matthias Gerstgrasser, David Parkes, Duncan Rheingans-‐Yoo
8042: Robust Finite-‐State Controllers for Uncertain POMDPs
Murat Cubuktepe, Nils Jansen, Sebastian Junges, Ahmadreza Marandi, Marnix Suilen, Ufuk Topcu
8168: TAC: Towered Actor Critic for Handling Multiple Action Types in Reinforcement Learning for Drug Discovery
Sai Krishna Gottipati, Yashaswi Pathak, Boris Sattarov, . Sahir, Rohan Nuttall, Mohammad Amini, Matthew E. Taylor, Sarath Chandar
8181: Learning with Safety Constraints: Sample Complexity of Reinforcement Learning for Constrained MDPs
Aria HasanzadeZonuzy, Archana Bura, Dileep Kalathil, Srinivas Shakkottai
8186: Solving Common-‐Payoff Games with Approximate Policy Iteration
Samuel Sokota, Edward Lockhart, Finbarr Timbers, Elnaz Davoodi, Ryan D'Orazio, Neil Burch, Martin Schmid, Michael Bowling, Marc Lanctot
8323: DeepSynth: Automata Synthesis for Automatic Task Segmentation in Deep Reinforcement Learning
Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate , Tom Melham, Daniel Kroening
8398: Inverse Reinforcement Learning with Explicit Policy Estimates
Navyata Sanghvi, Shinnosuke Usami, Mohit Sharma, Joachim Groeger, Kris Kitani
8545: Mean-‐Variance Policy Iteration for Risk-‐Averse Reinforcement Learning
Shangtong Zhang, Bo Liu, Shimon Whiteson
8556: Iterative Bounding MDPs: Learning Interpretable Policies via Non-‐Interpretable Methods
Nicholay Topin, Stephanie Milani, Fei Fang, Manuela Veloso
8619: Temporal-‐Logic-‐Based Reward Shaping for Continuing Reinforcement Learning Tasks
Yuqian Jiang, Sudarshanan Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, Peter Stone
8771: Online 3D Bin Packing with Constrained Deep Reinforcement Learning
Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, Kai Xu
9385: A General Offline Reinforcement Learning Framework for Interactive Recommendation
Teng Xiao, Donglin Wang
9457: Minimax Regret Optimisation for Robust Planning in Uncertain Markov Decision Processes
Marc Rigter, Bruno Lacerda, Nick Hawes
9459: Planning from Pixels in Atari with Learned Symbolic Representations
Andrea Dittadi, Frederik K Drachmann, Thomas Bolander
9813: Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization
Quentin Cappart, Thierry Moisan, Louis-‐Martin Rousseau, Isabeau Prémont-‐Schwarz, Andre Cire
9862: Distributional Reinforcement Learning via Moment Matching
Thanh Tang Nguyen, Sunil Gupta, Svetha Venkatesh
9869: Non-‐Asymptotic Convergence of Adam-‐Type Reinforcement Learning Algorithms under Markovian Sampling
Huaqing Xiong, Tengyu Xu, Yingbin Liang, Wei Zhang
9983: Data-‐Driven Competitive Algorithms for Online Knapsack and Set Cover
Ali Zeynali, Bo Sun, Mohammad Hajiesmaili, Adam Wierman
10000: Inverse Reinforcement Learning with Natural Language Goals
Li Zhou, Kevin Small
10014: Decentralized Policy Gradient Descent Ascent for Safe Multi-‐Agent Reinforcement Learning
Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Basar, Lior Horesh
10033: Visual Transfer for Reinforcement Learning via Wasserstein Domain Confusion
Josh Roy, George Konidaris
10098: Policy Optimization as Online Learning with Mediator Feedback
Alberto Maria Metelli, Matteo Papini, Pierluca D'Oro, Marcello Restelli
10284: Model-‐Free Online Learning in Unknown Sequential Decision Making Problems and Games
Gabriele Farina
10346: Deep Bayesian Quadrature Policy Optimization
Ravi Tej Akella, Kamyar Azizzadenesheli, Mohammad Ghavamzadeh, Animashree Anandkumar, Yisong Yue
7256: K-‐N-‐MOMDPs: Towards Interpretable Solutions for Adaptive Management
Jonathan Ferrer Mestres, Thomas Dietterich, Olivier Buffet, Iadine Chades