4th Annual Conference on Robot Learning (CoRL2020) ,November 16-18, 2020 | Cambridge MA, USA
The 4th Annual Conference on Robot Learning (CoRL 2020) is soliciting contributions at the intersection of robotics and machine learning. CoRL is a selective, single-track conference for robot learning research, covering a broad range of topics spanning robotics, ML and control, and including theory and applications.
Papers offering new advances in robot learning are invited. Topics include:
- Imitation learning and (inverse) reinforcement learning
- Probabilistic learning and representation of uncertainty in robotics
- Model-free learning for decision-making
- Machine learning for system identification and control
- Bio-inspired learning and control
- State estimation, localization and mapping
- Multimodal perception, sensor fusion, and computer vision
- Learning for human-robot interaction and natural language instruction processing
- Applications of robot learning in manipulation, mobility, driving, flight, and other areas of robotics
论文接收列表
[1]. Learning a Decision Module by Imitating Driver’s Control Behaviors
Junning Huang (SenseTime Research); Sirui Xie (UCLA); Jiankai Sun (CUHK)*; Qiurui Ma (Hong Kong University of Science and Technology); Chunxiao Liu (SenseTime Research); Dahua Lin (The Chinese University of Hong Kong); Bolei Zhou (CUHK)
[2]. Inverting the Forecasting Pipeline with SPF2: Sequential Pointcloud Forecasting for Sequential Pose Forecasting
Xinshuo Weng (Carnegie Mellon University)*; Jianren Wang (Carnegie Mellon University); Sergey Levine (UC Berkeley); Kris Kitani (Carnegie Mellon University); Nicholas Rhinehart (UC Berkeley)
[3]. Neural-Symbolic Program Search: Towards Automatic Autonomous Driving System Design
Jiankai Sun (CUHK)*; Hao Sun (CUHK); Tian Han (Stevens Institute of Technology); Bolei Zhou (CUHK)
[4]. LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar Fusion
Meet Shah (Uber ATG)*; Ankit Laddha (Uber); Matthew Langford (UberATG); Zhiling Huang (Uber ATG); Blake Barber (Uber ATG); Carlos Vallespi-Gonzalez (Uber); sida zhang (Uber); Raquel Urtasun (Uber ATG)
[5]. DROGON: A Trajectory Prediction Model based on Intention-Conditioned Behavior Reasoning
Chiho Choi (Honda Research Institute US)*; Srikanth Malla (Honda Research Institute); Abhishek N Patil (Hilti Inc); Joon Hee Choi (Sungkyunkwan University)
[6]. CAMPs: Learning Context-Specific Abstractions for Efficient Planning in Factored MDPs
Rohan Chitnis (Massachusetts Institute of Technology)*; Tom Silver (MIT); Beomjoon Kim (MIT); Leslie Kaelbling (MIT); Tomas Lozano-Perez (MIT)
[7]. Augmenting GAIL with BC for sample efficient imitation learning
Rohit Kumar Jena (Carnegie Mellon University)*; Changliu Liu (Carnegie Mellon University); Katia Sycara (Carnegie Mellon University)
[8]. From pixels to legs: Hierarchical learning of quadruped locomotion
Deepali Jain (Google)*; Ken Caluwaerts (Google); Atil Iscen (Google)
[9]. Learning a Decentralized Multi-Arm Motion Planner
Huy Ha (Columbia University); Jingxi Xu (Columbia University); Shuran Song (Columbia University)*
[10]. SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural Networks
Yan Xu (The Chinese University of Hong Kong)*; Zhaoyang Huang (Zhejiang University); Xinge Zhu (The Chinese University of Hong Kong); Kwan-Yee Lin (SenseTime Research); Jianping Shi (Sensetime Group Limited); Guofeng Zhang (Zhejiang University); Hujun Bao (Zhejiang University); Hongsheng Li (Chinese University of Hong Kong)
[11]. Learning 3D Dynamic Scene Representations for Robot Manipulation
Zhenjia Xu (Columbia University)*; Zhanpeng He (Columbia University); Jiajun Wu (Stanford University); Shuran Song (Columbia University)
[12]. CoT-AMFlow: Adaptive Modulation Network with Co-Teaching Strategy for Unsupervised Optical Flow Estimation
Hengli Wang (Hong Kong University of Science and Technology)*; Rui R. Fan (UC San Diego); Ming Liu (HKUST)
[13]. SAM: Squeeze-and-Mimic Networks for Conditional Visual Driving Policy Learning
Albert Zhao (UCLA)*; Tong He (UCLA); Yitao Liang (UCLA); Haibin Huang (Kuaishou Technology); Guy Van den Broeck (UCLA); Stefano Soatto (UCLA)
[14]. Fit2Form: 3D Generative Model for Robot Gripper Form Design
Huy Ha (Columbia University); Shubham Agrawal (Columbia University); Shuran Song (Columbia University)*
[15]. Accelerating Reinforcement Learning with Learned Skill Priors
Karl Pertsch (University of Southern California)*; Youngwoon Lee (University of Southern California); Joseph J Lim (USC)
[16]. Positive-Unlabeled Reward Learning
Danfei Xu (Stanford University)*; Misha Denil (DeepMind)
[17]. A Coarse-To-Fine (C2F) Representation for End-To-End 6-DoF Grasp Detection
Kuang-Yu Jeng (National Taiwan University)*; Yueh-Cheng Liu (National Taiwan University); Zhe Yu Liu (National Taiwan University); Jen-Wei Wang (National Taiwan University); Ya-Liang Chang (National Taiwan University); Hung-Ting Su (National Taiwan University); Winston H. Hsu (National Taiwan University)
[18]. Action-based Representation Learning for Autonomous Driving
Yi Xiao (CVC & UAB)*; Felipe Codevilla (MILA); Christopher Pal (École Polytechnique de Montréal ); Antonio M. Lopez (CVC & UAB)
[19]. Task-Relevant Adversarial Imitation Learning
Konrad Zolna (DeepMind)*; Scott Reed (DeepMind); Alexander Novikov (DeepMind); David Budden (DeepMind); Serkan Cabi (DeepMind); Sergio Gómez Colmenarejo (DeepMind); Misha Denil (DeepMind); Nando de Freitas (DeepMind); Ziyu Wang (Google Research, Brain Team)
[20]. SMARTS: An Open-Source Scalable Multi-Agent RL Training School for Autonomous Driving
Ming Zhou (Shanghai Jiao Tong University); Jun Luo (Huawei Technologies Canada Co. Ltd.)*; Julian Villella (Independant); Yaodong Yang (Huawei); David Rusu (Huawei); Jiayu Miao (Shanghai Jiao Tong University); Weinan Zhang (Shanghai Jiao Tong University); Montgomery T Alban (Huawei); IMAN FADAKAR (HUAWEI TECHNOLOGIES CANADA); Zheng Chen (Huawei); Chongxi Huang (Huawei Technologies); Ying Wen (Huawei); Kimia Hassanzadeh (Huawei); Daniel Graves (Huawei); Zhengbang Zhu (Huawei Noah’s Ark Lab); Yihan Ni (Huawei Technologies); Nhat M Nguyen (Huawei); Mohamed Elsayed (Huawei Technologies Canada Co., Ltd); Haitham Ammar (Huawei); Alexander I Cowen-Rivers (Huawei R&D UK); Sanjeevan Ahilan (Independant); Zheng Tian (Huawei); Daniel Palenicek (Huawei); Kasra Rezaee (University of Toronto); Peyman Yadmellat (Huawei Technologies Canada); Kun Shao (Huawei Noah's Ark Lab); dong chen (Huawei Technologies Co., Ltd.); Baokuan Zhang (Huawei Technologies Co., Ltd.); Hongbo Zhang (Huawei Noah's Ark Lab); Jianye Hao (Tianjin University); Wulong Liu (Huawei Noah's Ark Lab); Jun Wang (UCL)
[21]. Reconfigurable Voxels: A New Representation for LiDAR-Based Point Clouds
Tai Wang (The Chinese University of Hong Kong)*; Xinge Zhu (The Chinese University of Hong Kong); Dahua Lin (The Chinese University of Hong Kong)
[22]. Learning Object Manipulation Skills via Approximate State Estimation from Real Videos
Vladimír Petrík (Czech Technical University); Makarand Tapaswi (INRIA)*; Ivan Laptev (INRIA Paris); Josef Sivic (Inria and Czech Technical University)
[23]. Integrating Egocentric Localization for More Realistic Point-Goal Navigation Agents
Samyak Datta (Georgia Tech)*; Oleksandr Maksymets (Facebook AI Research); Judy Hoffman (Georgia Tech); Stefan Lee (Oregon State University); Dhruv Batra (Georgia Tech & Facebook AI Research); Devi Parikh (Georgia Tech & Facebook AI Research)
[24]. PLOP: Probabilistic poLynomial Objects trajectory Prediction for autonomous driving
Thibault Buhet (Valeo); Emilie Wirbel (Valeo)*; Andrei Bursuc (valeo.ai); Xavier Perrotton (Valeo)
[25]. Reinforcement Learning with Videos: Combining Offline Observations with Interaction
Karl Schmeckpeper (University of Pennsylvania)*; Oleh Rybkin (University of Pennsylvania); Kostas Daniilidis (University of Pennsylvania); Sergey Levine (UC Berkeley); Chelsea Finn (Stanford)
[26]. Learning Obstacle Representations for Neural Motion Planning
Robin STRUDEL (INRIA Paris)*; Ricardo Garcia Pinel (INRIA); Justin Carpentier (INRIA); Jean-Paul Laumond (LAAS-CNRS); Ivan Laptev (INRIA Paris); Cordelia Schmid (INRIA)
[27]. CLOUD: Contrastive Learning of Unsupervised Dynamics
Jianren Wang (Carnegie Mellon University)*; Yujie Lu (Tencent); Hang Zhao (MIT)
[28]. Exploratory Grasping: Performance Bounds and Asymptotically Optimal Algorithms for Learning to Robustly Grasp an Unknown Polyhedral Object
Michael Danielczuk (UC Berkeley); Ashwin Balakrishna (UC Berkeley)*; Daniel S Brown (University of Texas at Austin); Ken Goldberg (UC Berkeley)
[29]. Attention-Privileged Reinforcement Learning
Sasha Salter (University of Oxford)*; Dushyant Rao (DeepMind); Markus Wulfmeier (DeepMind); Ingmar Posner (Oxford University); Raia Hadsell (Deepmind)
[30]. One Thousand and One Hours: Self-driving Motion Prediction Dataset
John R Houston (Lyft); Guido C.A. Zuidhof (Lyft); Luca Bergamini (Lyft); Yawei Ye (Lyft); Long Chen (Lyft); Ashesh Jain (Lyft); Sammy Omari (Lyft); Vladimir Iglovikov (Lyft); Peter Ondruska (Lyft)*
[31]. Recovering and Simulating Pedestrians in the Wild
Ze Yang (Uber ATG)*; Sivabalan Manivasagam (Uber ATG, University of Toronto); Ming Liang (Uber); Bin Yang (Uber ATG & University of Toronto); Wei-Chiu Ma (MIT); Raquel Urtasun (Uber ATG)
[32]. SoftGym: Benchmarking Deep Reinforcement Learning for Deformable Object Manipulation
Xingyu Lin (Carnegie Mellon University)*; Yufei Wang (Carnegie Mellon University); Jake Olkin (CMU); David Held (CMU)
[33]. S3K: Self-Supervised Semantic Keypoints for Robotic Manipulation via Multi-View Consistency
Mel Vecerik (University College London, Deepmind)*; Jean-Baptiste Regli (Deepmind); Oleg Sushkov (DeepMind); David Barker (DeepMind); Rugile Pevceviciute (DeepMind); Thomas Roth ̈orl (DeepMind); Raia Hadsell (Deepmind); Lourdes Agapito (University College London); Jonathan Scholz (DeepMind)
[34]. Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Yu Xiang (NVIDIA)*; Christopher Xie (University of Washington); Arsalan Mousavian (NVIDIA); Dieter Fox (NVIDIA)
[35]. Modeling Long-horizon Tasks as Sequential Interaction Landscapes
Soeren Pirk (Google)*; Karol Hausman (Google Brain); Alexander Toshev (Google); Mohi Khansari (X, The Moonshot Factory)
[36]. PixL2R: Guiding Reinforcement Learning Using Natural Language by Mapping Pixels to Rewards
Prasoon Goyal (The University of Texas at Austin)*; Scott Niekum (UT Austin); Raymond Mooney (Univ. of Texas at Austin)
[37]. Auxiliary Tasks Speed Up Learning PointGoal Navigation
Joel Ye (Georgia Institute of Technology)*; Erik Wijmans (Georgia Tech); Dhruv Batra (Georgia Tech & Facebook AI Research); Abhishek Das (Facebook AI Research)
[38]. Learning hierarchical relationships for object-goal navigation
Anwesan Pal (UC San Diego); Yiding Qiu (University of California, San Diego)*; Henrik Christensen (UC San Diego)
[39]. f-IRL: Inverse Reinforcement Learning via State Marginal Matching
Harshit S Sikchi (Carnegie Mellon University)*; Tianwei Ni (Carnegie Mellon University); Yufei Wang (Carnegie Mellon University); Tejus Gupta (Carnegie Mellon University); Ben Eysenbach (Carnegie Mellon University); Lisa Lee (Carnegie Mellon University)
[40]. Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing
Ignat Georgiev (The University of Edinburgh)*; Christoforos Chatzikomis (Arrival); Timo Voelkl (Arrival); Joshua Smith (The University of Edinburgh); Michael Mistry (U of Edinburgh)
[41]. Learning Predictive Representations for Deformable Objects Using Contrastive Estimation
Wilson H Yan (UC Berkeley)*; Ashwin Vangipuram (UC Berkeley); Pieter Abbeel (UC Berkeley); Lerrel Pinto ()
[42]. Learning Latent Representations to Influence Multi-Agent Interaction
Annie Xie (Stanford University)*; Dylan P Losey (Stanford University); Ryan Tolsma (Stanford University); Chelsea Finn (Stanford); Dorsa Sadigh (Stanford)
[43]. Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments
Jun Yamada (University of Southern California); Youngwoon Lee (University of Southern California)*; Gautam Salhotra (University of Southern California); Karl Pertsch (University of Southern California); Max Pflueger (University of Southern California); Gaurav Sukhatme (University of Southern California); Joseph J Lim (USC); Peter Englert (University of Southern California)
[44]. The EMPATHIC Framework for Task Learning from Implicit Human Feedback
Yuchen Cui (University of Texas at Austin)*; Qiping Zhang (The University of Texas at Austin); Brad Knox (Bosch); Alessandro Allievi (Bosch); Peter Stone (University of Texas at Austin and Sony AI); Scott Niekum (UT Austin)
[45]. Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection
Alex Bewley (Google)*; Pei Sun (Waymo); Thomas Mensink (Google Research / University of Amsterdam); Cristian Sminchisescu (Google); Dragomir Anguelov (Waymo)
[46]. High Acceleration Reinforcement Learning for Real-World Juggling with Binary Rewards
Kai Ploeger (TU Darmstadt)*; Michael Lutter (TU Darmstadt); Jan Peters (TU Darmstadt + Max Planck Institute for Intelligent Systems)
[47]. Guaranteeing Safety of Learned Perception Modules via Measurement-Robust Control Barrier Functions
Sarah Dean (UC Berkeley)*; Andrew Taylor (Caltech); Ryan Cosner (Caltech); Benjamin Recht (UC Berkeley); Aaron Ames (Caltech)
[48]. Sim-to-Real Transfer for Vision-and-Language Navigation
Peter Anderson (Google)*; Ayush Shrivastava (Georgia Institute of Technology); Joanne Truong (Georgia Institute of Technology); Arjun Majumdar (Georgia Tech); Devi Parikh (Georgia Tech & Facebook AI Research); Dhruv Batra (Georgia Tech & Facebook AI Research); Stefan Lee (Oregon State University)
[49]. Interactive Imitation Learning in State-Space
Snehal Jauhri (TU Delft)*; Carlos Celemin (TU Delft); Jens Kober (TU Delft)
[50]. Keypoints into the Future: Self-Supervised Correspondence in Model-Based Reinforcement Learning
Lucas Manuelli (Massachusetts Institute of Technology)*; Yunzhu Li (MIT); Pete Florence (Google); Russ Tedrake (MIT)
[51]. Model-based Reinforcement Learning for Multiagent Goal Alignment
Rose E Wang (MIT)*; J. Chase Kew (Google Brain); Dennis Lee (Google Inc.); Tsang-Wei Lee (Google Brain); Tingnan Zhang (Google); Brian Ichter (Google Brain); Jie Tan (Google); Aleksandra Faust (Google Brain)
[52]. Rearranging the Visual World: Transporter Networks
Andy Zeng (Google)*; Pete Florence (Google); Jonathan Tompson (Google); Stefan Welker (Google); Jonathan Chien (Google); Maria Attarian (Google); Travis Armstrong (Google); Ivan Krasin (Google); Dan Duong (Google); Vikas Sindhwani (Google); Johnny Lee (Google)
[53]. Assisted Perception: Optimizing Observations to Communicate State
Siddharth Reddy (UC Berkeley)*; Sergey Levine (UC Berkeley); Anca Dragan (EECS Department, University of California, Berkeley)
[54]. Action-Conditional Recurrent Kalman Networks For Forward and Inverse Dynamics Learning
Vaisakh Shaj (Karlsruhe Institute Of Technology)*; Philipp Becker (Karlsruhe Institute of Technology (KIT)); Dieter Büchler (MPI for Intelligent Systems Tübingen); Harit Pandya (University of Lincoln); Niels van Duijkeren (Bosch Corporate Research); C. James Taylor (Lancaster University); Marc Hanheide (University of Lincoln); Gerhard Neumann (KIT)
[55]. Learning Robot Policies for Untangling Dense Knots in Linear Deformable Structures
Jennifer Grannen (UC Berkeley)*; Priya Sundaresan (UC Berkeley); Brijen Thananjeyan (UC Berkeley); Jeffrey Ichnowski (University of California, Berkeley); Ashwin Balakrishna (UC Berkeley); Vainavi Viswanath (UC Berkeley); Michael Laskey (UC Berkeley); Joseph Gonzalez (UC Berkeley); Ken Goldberg (UC Berkeley)
[56]. Safe Policy Learning for Continuous Control
Yinlam Chow (Google AI)*; Ofir Nachum (Google); Aleksandra Faust (Google Brain); Edgar A Dueñez-Guzman (DeepMind); Mohammad Ghavamzadeh (Google Research)
[57]. Learning to Compose Hierarchical Object-Centric Controllers for Robotic Manipulation
Mohit Sharma (Carnegie Mellon University)*; Jacky Liang (Carnegie Mellon University); Jialiang Zhao (Carnegie Mellon University); Alex Lagrassa (Carnegie Mellon University); Oliver Kroemer (Carnegie Mellon University)
[58]. Relational Learning for Skill Preconditions
Mohit Sharma (Carnegie Mellon University)*; Oliver Kroemer (Carnegie Mellon University)
[59]. Social-VRNN: One-Shot Multi-modal Trajectory Prediction for Interacting Pedestrians
Bruno Ferreira de Brito (Delft University of Technology)*; Hai Zhu (Delft University of Technology); Wei Pan (TUDelft); Javier Alonso-Mora (Delft University of Technology)
[60]. MuGNet: Multi-Resolution Graph Neural Network for Segmenting Large-Scale Pointclouds
Liuyue Xie (Carnegie Mellon University)*; Tomotake Furuhata (Carnegie Mellon University); Kenji Shimada (Carnegie Mellon University )
[61]. Learning a Contact-Adaptive Controller for Robust, Efficient Legged Locomotion
Xingye Da (Nvidia)*; Zhaoming Xie (University of British Columbia); David Hoeller (Nvidia); Byron Boots (Nvidia); Anima Anandkumar (); Yuke Zhu (University of Texas - Austin); Buck Babich (NVIDIA); Animesh Garg (University of Toronto, Vector Institute, Nvidia)
[62]. TNT: Target-driveN Trajectory Prediction
Hang Zhao (Waymo)*; Jiyang Gao (Waymo); Tian Lan (Waymo); Chen Sun (Google); Benjamin Sapp (Waymo); Balakrishnan Varadarajan (Google Research); Yue Shen (Waymo, LLC); Yi Shen (Waymo); Yuning Chai (Waymo); Cordelia Schmid (Google); Congcong Li (Waymo); Dragomir Anguelov (Waymo)
[63]. Planning Paths Through Unknown Space by Imagining What Lies Therein
Yutao Han (Cornell University)*; Jacopo Banfi (Cornell University); Mark Campbell (Cornell University)
[64]. Learning Dexterous Manipulation from Suboptimal Experts
Rae Jeong (DeepMind)*; Jost Tobias Springenberg (DeepMind); Jackie Kay (DeepMind); Dan Zheng (DeepMind); Alexandre Galashov (DeepMind); Nicolas Heess (DeepMind); Francesco Nori (DeepMind)
[65]. STReSSD: Sim-To-Real from Sound for Stochastic Dynamics
Carolyn Matl (University of California, Berkeley)*; Yashraj S Narang (NVIDIA); Dieter Fox (NVIDIA); Ruzena Bajcsy (UC Berkeley); Fabio Ramos (NVIDIA, The University of Sydney)
[66]. Contrastive Variational Model-Based Reinforcement Learning for Complex Observations
Xiao Ma (National University of Singapore)*; SIWEI CHEN (National University of Singapore); David Hsu (NUS); Wee Sun Lee (National University of Singapore)
[67]. Universal Embeddings for Spatio-Temporal Tagging of Self-Driving Logs
Sean Segal (Uber ATG)*; Eric Kee (Uber ATG); Wenjie Luo (University of Toronto); Abbas Sadat (Uber ATG); Ersin Yumer (Uber ATG); Raquel Urtasun (Uber ATG)
[68]. Asynchronous Deep Model Reference Adaptive Control
Girish Joshi (University of Illinois Urbana-Champaign)*; Jasvir Virdi (University of Illinois at Urbana-Champaign); Girish Chowdhary (University of Illinois at Urbana Champaign)
[69]. Probably Approximately Correct Vision-Based Planning using Motion Primitives
Sushant Veer (Princeton University)*; Anirudha Majumdar (Princeton University)
[70]. Tactile Object Pose Estimation from the First Touch with Geometric Contact Rendering
Maria Bauza Villalonga (MIT)*; Alberto Rodriguez (MIT); Bryan Lim (MIT); Eric Valls (MIT); Theo Sechopoulos (MIT)
[71]. Visual Self-Supervised Reinforcement Learning with Object Reasoning
Yufei Wang (Carnegie Mellon University)*; Narasimhan Gautham (Carnegie Mellon University); Xingyu Lin (Carnegie Mellon University); David Held (CMU)
[72]. Sample-efficient Cross-Entropy Method for Real-time Planning
Cristina Pinneri (Max Planck Institute for Intelligent Systems)*; Shambhuraj Sawant (Max Planck Institute for Intelligent Systems); Sebastian Blaes (Max Planck Institute for Intelligent Systems); Jan Achterhold (Max Planck Institute for Intelligent Systems); Joerg Stueckler (Max-Planck-Institute for Intelligent Systems); Michal Rolinek (Max Planck Institute for Intelligent Systems); Georg Martius (Max Planck Institute for Intelligent Systems)
[73]. Sim2Real Transfer for Deep Reinforcement Learning with Stochastic State Transition Delays
Sandeep Singh Sandha (UCLA)*; Luis Garcia (USC Information Sciences Institute); Bharathan Balaji (Amazon); Fatima Anwar (University of Massachusetts, Amherst); Mani Srivastava (UC Los Angeles)
[74]. Towards General and Autonomous Learning of Core Skills: A Case Study in Locomotion
Roland Hafner (Google DeepMind)*; Tim Hertweck (DeepMind); Philipp Kloeppner (TU Darmstadt); Michael Bloesch (Google); Michael Neunert (Google DeepMind); Markus Wulfmeier (DeepMind); Saran Tunyasuvunakool (DeepMind); Nicolas Heess (DeepMind); Martin Riedmiller (DeepMind)
[75]. IV-SLAM: Introspective Vision for Simultaneous Localization and Mapping
Sadegh Rabiee (University of Texas at Austin)*; Joydeep Biswas (University of Texas at Austin)
[76]. Learning to Walk in the Real World with Minimal Human Effort
Sehoon Ha (Georgia Institute of Technology); Peng Xu (Google Inc); Zhenyu Tan (Google); Sergey Levine (UC Berkeley)*; Jie Tan (Google)
[77]. Generation of Realistic Images for Learning in Simulation using FeatureGAN
Nicolas Ricardo Cruz (Universidad de Chile)*; Javier Ruiz-del-Solar (Universidad de Chile)
[78]. Incremental learning of EMG-based control commands using Gaussian Processes
Felix Schiel (DLR German Aerospace Center); Annette Hagengruber (DLR German Aerospace Center)*; Jörn Vogel (DLR German Aerospace Center); Rudolph Triebel (German Aerospace Center (DLR))
[79]. Flightmare: A Flexible Quadrotor Simulator
Yunlong Song (ETH / University of Zurich)*; Selim Naji (ETH / Univ. of Zurich); Elia Kaufmann (ETH / University of Zurich); Antonio Loquercio (ETH / University of Zurich); Davide Scaramuzza (University of Zurich & ETH Zurich, Switzerland)
[80]. Hardware as Policy: Mechanical and Computational Co-Optimization using Deep Reinforcement Learning
Tianjian Chen (Columbia University)*; Zhanpeng He (Columbia University); Matei Ciocarlie (Columbia)
[81]. StrObe: Streaming Object Detection from LiDAR Packets
Davi Frossard (Uber Advanced Technologies Group / University of Toronto)*; Shun Da Suo (Uber ATG, University of Toronto); Sergio Casas (University of Toronto); James Tu (Uber ATG); Raquel Urtasun (Uber ATG)
[82]. Towards Robotic Assembly by Predicting Robust, Precise and Task-oriented Grasps
Jialiang Zhao (Carnegie Mellon University)*; Daniel Troniak (Carnegie Mellon University); Oliver Kroemer (Carnegie Mellon University)
[83]. Learning to Communicate and Correct Pose Errors
Nicholas B Vadivelu (Uber ATG)*; Mengye Ren (Uber ATG, University of Toronto); James Tu (Uber ATG); Jingkang Wang (Uber ATG, University of Toronto); Raquel Urtasun (Uber ATG)
[84]. Visual Localization and Mapping with Hybrid SFA
Muhammad Haris (Frankfurt University of Applied Sciences)*; Mathias Franzius (Honda Research Institute Europe GmbH); Sai Krishna Kaushik Karanam (Frankfurt University of Applied Sciences); Ute Bauer-Wersing (Frankfurt University of Applied Sciences)
[85]. EXI-Net: EXplicitly/Implicitly Conditioned Network for Multiple Environment Sim-to-Real Transfer
Takayuki Murooka (The University of Tokyo)*; Masashi Hamaya (OMRON SINICX Corporation); Felix WHE von Drigalski (OMRON SINIC X); Kazutoshi Tanaka (OMRON SINIC X Corporation); Yoshihisa Ijiri (OMRON Corporation)
[86]. Self-Supervised Object-in-Gripper Segmentation from Robotic Motions
Wout Boerdijk (DLR)*; Martin Sundermeyer (German Aerospace Center (DLR)); Maximilian Durner (DLR); Rudolph Triebel (German Aerospace Center (DLR))
[87]. Latent State Models for Meta-Reinforcement Learning from Images
Anusha Nagabandi (UC Berkeley)*; Zihao Zhao (UC Berkeley); Kate Rakelly (UC Berkeley); Chelsea Finn (Stanford); Sergey Levine (UC Berkeley)
[88]. Learning from Suboptimal Demonstration via Self-Supervised Reward Regression
Letian Chen (Georgia Institute of Technology)*; Rohan R Paleja (Georgia Institute of Technology); Matthew Gombolay (Georgia Institute of Technology)
[89]. Stein Variational Model Predictive Control
Alexander Lambert (Georgia Institute of Technology)*; Fabio Ramos (NVIDIA, The University of Sydney); Byron Boots (University of Washington); Dieter Fox (NVIDIA); Adam Fishman (University of Washington)
[90]. Learning Interactively to Resolve Ambiguity in Reference Frame Selection
Giovanni Franzese (Delft University of Technology)*; Carlos Celemin (TU Delft); Jens Kober (TU Delft)
[91]. Learning Trajectories for Visual-Inertial System Calibration via Model-based Heuristic Deep Reinforcement Learning
Le Chen (ETH Zurich)*; Yunke Ao (ETH Zurich); Florian Tschopp (ETH Zurich); Andrei Cramariuc (ETH Zurich); Michel Breyer (ETH); Jen Jen Chung (ETH Zurich); Roland Siegwart (ETH Zürich, Autonomous Systems Lab); Cesar Cadena (ETH Zurich)
[92]. A User’s Guide to Calibrating Robotic Simulators
Bhairav J Mehta (MIT)*; Ankur Handa (NVIDIA); Dieter Fox (NVIDIA); Fabio Ramos (NVIDIA, The University of Sydney)
[93]. Learning Stability Certificates from Data
Nicholas Boffi (Harvard University); Stephen Tu (Google)*; Nikolai Matni (University of Pennsylvania); Jean-Jacques Slotine (MIT); Vikas Sindhwani (Google)
[94]. Learning Hybrid Control Barrier Functions from Data
Lars Lindemann (KTH Royal Institute of Technology)*; Haimin Hu (University of Pennsylvania); Alexander Robey (University of Pennsylvania); Hanwen Zhang (University of Pennsylvania); Dimos Dimarogonas (KTH Royal Institute of Technology, Sweden); Stephen Tu (Google); Nikolai Matni (University of Pennsylvania)
[95]. Map-Adaptive Goal-Based Trajectory Prediction
Lingyao Zhang (UATC LLC)*; Po-Hsun Su (UATC LLC); Jerrick Hoang (Uber ATG); Galen Clark Haynes (Uber ATC); Micol Marchetti-Bowick (Uber ATC)
[96]. The RobotSlang Benchmark😃ialog-guided Robot Localization and Navigation
Shurjo Banerjee (University of Michigan)*; Jesse Thomason (University of Washington); Jason J Corso (University of Michigan)
[97]. The Emergence of Adversarial Communication in Multi-Agent Reinforcement Learning
Jan Blumenkamp (University of Cambridge)*; Amanda Prorok (University of Cambridge)
[98]. Learning rich touch representations through cross-modal self-supervision
Martina Zambelli (DeepMind)*; Yusuf Aytar (DeepMind); Francesco Visin (Google DeepMind); Yuxiang Zhou (DeepMind); Raia Hadsell (Deepmind)
[99]. Generalization Guarantees for Multi-Modal Imitation Learning
Allen Z. Ren (Princeton University)*; Sushant Veer (Princeton University); Anirudha Majumdar (Princeton University)
[100]. Multi-Modal Anomaly Detection for Unstructured and Uncertain Environments
Tianchen Ji (University of Illinois at Urbana-Champaign)*; Sri Theja Vuppala (University of Illinois at Urbana-Champaign); Girish Chowdhary (University of Illinois at Urbana Champaign); Katherine Driggs-Campbell (University of Illinois at Urbana-Champaign)
[101]. Generative adversarial training of product of policies for robust and adaptive movement primitives
Emmanuel Pignat (Idiap Research Institute and EPFL)*; Hakan Girgin (Idiap Research Institute); Sylvain Calinon (Idiap Research Institute)
[102]. Robot Action Selection Learning via Layered Dimension Informed Program Synthesis
Jarrett Holtz (Univ of Texas)*; Arjun Guha (Northeastern University); Joydeep Biswas (University of Texas at Austin)
[103]. Towards policy learning in SE(3) action spaces
Dian Wang (Northeastern University)*; Colin Kohler (Northeastern); Robert Platt (Northeastern University)
[104]. Amodal 3D Reconstruction for Robotic Manipulationvia Stability and Connectivity
William Agnew (University of Washington)*; Christopher Xie (University of Washington); Aaron T Walsman (University of Washington); Octavian V Murad (University of Washington); Yubo Wang (University of Washington); Pedro Domingos (University of Washington)); Siddhartha Srinivasa (University of Washington)
[105]. Learning an Expert Skill-Space for Replanning Dynamic Quadruped Locomotion over Obstacles
David Surovik (University of Oxford)*; Oliwier Melon (University of Oxford); Mathieu Geisert (University of Oxford); Maurice Fallon (University of Oxford); Ioannis Havoutis ("Oxford Robotics Institute, Universtity of Oxford")
[106]. Learning Certified Control Using Contraction Metric
Dawei Sun (University of Illinois Urbana-Champaign)*; Susmit Jha (SRI International); Chuchu Fan (MIT)
[107]. Same Object, Different Grasps: Data and Semantic Knowledge for Task-Oriented Grasping
Adithyavairavan Murali (Carnegie Mellon University Robotics Institute)*; Weiyu Liu (Georgia Institute of Technology); Kenneth Marino (Carnegie Mellon University); Sonia Chernova (Georgia Institute of Technology ); Abhinav Gupta (CMU/FAIR)
[108]. DIRL: Domain-Invariant Robot Learning for Sim-to-Real Transfer
Ajay Tanwani (UC Berkeley)*
[109]. Learning Hierarchical Task Networks with Preferences from Unannotated Demonstrations
Kevin Chen (Georgia Institute of Technology); David Kent (Georgia Institute of Technology)*; Nithin Shrivatsav Srikanth (Georgia Institute of Technology); Harish Ravichandar (Georgia Institute of Technology); Sonia Chernova (Georgia Institute of Technology )
[110]. A Long Horizon Planning Framework for Manipulating Rigid Pointcloud Objects
Anthony Simeonov (Massachusetts Institute of Technology)*; Yilun Du (MIT); Beomjoon Kim (MIT); Francois Hogan (MIT); Joshua Tenenbaum (MIT); Pulkit Agrawal (UC Berkeley); Alberto Rodriguez (MIT)
[111]. Volumetric Grasping Network: Real-time 6 DOF Grasp Detection in Clutter
Michel Breyer (ETH)*; Jen Jen Chung (ETH Zurich); Lionel Ott (The University of Sydney); Roland Siegwart (ETH Zürich, Autonomous Systems Lab); Juan Nieto (ETH Zürich Autonomous Systems Lab)
[112]. Uncertainty-Aware Constraint Learning for Adaptive Safe Motion Planning from Demonstrations
Glen Chou (University of Michigan)*; Dmitry Berenson (U Michigan); Necmiye Ozay (University of Michigan)
[113]. Belief-Grounded Networks for Accelerated Robot Learning under Partial Observability
Hai H Nguyen (Northeastern University)*; Brett Daley (Northeastern University); Xinchao Song (Northeastern University); Christopher Amato (Northeastern University); Robert Platt (Northeastern University)
[114]. Time-Bounded Mission Planning in Time-Varying Domains with Semi-MDPs and Gaussian Processes
Paul Duckworth (University of Oxford)*; Bruno Lacerda (University of Oxford); Nick Hawes (Oxford Robotics Institute)
[115]. 3D-OES: Viewpoint-Invariant Object-Factorized Environment Simulators
Hsiao-Yu Tung (Carnegie Mellon University)*; Zhou Xian (Carnegie Mellon University); Mihir Prabhudesai (Carnegie Mellon University); Shamit Lal (CMU); Katerina Fragkiadaki (Carnegie Mellon University)
[116]. Learning Object-conditioned Exploration using Distributed Soft Actor Critic
Ayzaan Wahid (Google)*; Austin Stone (Google); Brian Ichter (Google Brain); Kevin Chen (Stanford); Alexander Toshev (Google)
[117]. Fast robust peg-in-hole insertion with continuous visual servoing
Rasmus Haugaard (University of Southern Denmark)*; Jeppe Langaa (University of Southern Denmark); Christoffer Sloth (University of Southern Denmark); Anders G Buch (University of Southern Denmark)
[118]. Learning a natural-language to LTL executable semantic parser for grounded robotics
Christopher Wang (MIT)*; Candace Ross (Massachusetts Institute of Technology); Yen-Ling Kuo (MIT); Boris Katz (MIT); Andrei Barbu (MIT)
[119]. Latent Action Space for Offline Reinforcement Learning
Wenxuan Zhou (Carnegie Mellon University)*; Sujay M Bajracharya (Carnegie Mellon University); David Held (CMU)
[120]. Unsupervised Metric Relocalization Using Transform Consistency Loss
Mike J Kasper (University of Colorado)*; Fernando Nobre (Amazon); Christoffer Heckman (University of Colorado); Nima Keivan (Amazon)
[121]. MultiPoint: Cross-spectral registration of thermal and optical aerial imagery
Florian Achermann (ETH Zurich)*; Jen Jen Chung (ETH Zurich); Andrey Kolobov (Microsoft); Debadeepta Dey (Microsoft); Roland Siegwart (ETH Zürich, Autonomous Systems Lab); Nicholas Lawrance (ETH Zürich)
[122]. TartanVO: A Generalizable Learning-based VO
Wenshan Wang (CMU)*; Yaoyu Hu (Carnegie Mellon University); Sebastian Scherer (Carnegie Mellon University)
[123]. Soft Multicopter Control using Neural Dynamics Identification
Yitong Deng (Dartmouth College)*; Yaorui Zhang (Dartmouth College); Xingzhe He (University of British Columbia); Shuqi Yang (Dartmouth College); Yunjin Tong (Dartmouth College); Michael Zhang (Dartmouth College); Daniel M DiPietro (Dartmouth College); Bo Zhu (Dartmouth College)
[124]. Safe Optimal Control Using Stochastic Barrier Functions and Deep Forward-Backward SDEs
Marcus A Pereira (Georgia Institute Technology)*; Ziyi o Wang (Georgia Institute of Technology); Ioannis Exarchos (Stanford University); Evangelos Theodorou (Georgia Institute of Technology)
[125]. Predicting Diverse Plausible Shape Completions from Ambiguous Depth Images
Bradley L Saund (University of Michigan)*; Dmitry Berenson (University of Michigan)
[126]. Multiagent Rollout and Policy Iteration for POMDP with Application to Multi-Robot Repair Problems
Sushmita Bhattacharya (Harvard University)*; Siva Kailas (Arizona State University); Sahil Badyal (Arizona State University); Stephanie Gil (Harvard University); Dimitri Bertsekas (Massachusetts Institute of Technology (MIT))
[127]. Few-shot Object Grounding for Mapping Natural Language Instructions to Robot Control
Valts Blukis (Cornell University)*; Ross Knepper (Cornell University); Yoav Artzi (Cornell University)
[128]. Deep Latent Competition: Learning to Race Using Visual Control Policies in Latent Space
Wilko Schwarting (Massachusetts Institute of Technology)*; Tim N Seyde (MIT); Igor Gilitschenski (Massachusetts Institute of Technology); Lucas Liebenwein (Massachusetts Institute of Technology); Ryan M Sander (Massachusetts Institute of Technology); Sertac Karaman (Massachusetts Institute of Technology); Daniela Rus (Massachusetts Institute of Technology)
[129]. An Open-Source Robot for Learning Dexterity
Manuel Wuthrich (Max Planck Institute for Intelligent Systems)*; Felix Widmaier (MPI for Intelligent Systems, Tübingen); Felix Grimminger ( Max Planck Institute for Intelligent Systems); Shruti Joshi (IIT Kanpur); Vaibhav Agrawal (Max Planck Institute for Intelligent Systems ); Bilal Hammoud (Max Planck Institute for Intelligent Systems); Majid Khadiv (Max Planck Institute for Intelligent Systems ); Miroslav Bogdanovic (Max Planck Institute for Intelligent Systems); Vincent Berenz (Max Planck Institute for Intelligent Systems); Julian Viereck (NYU); Maximilien Naveau (MPI); Ludovic Righetti (New York University); Bernhard Schölkopf (MPI for Intelligent Systems, Tübingen); Stefan Bauer (MPI IS)
[130]. Learning to Improve Multi-Robot Hallway Navigation
Jin Soo Park (The University of Texas at Austin)*; Brian Y Tsang (University of Texas at Austin); Harel Yedidsion (UT Austin); Garrett Warnell (US Army Research Lab); Daehyun Kyoung (The University of Texas at Austin); Peter Stone (University of Texas at Austin and Sony AI)
[131]. ACNMP: Flexible Skill Formation with Learning from Demonstration and Reinforcement Learning via Representation Sharing
Mete T Akbulut (Bogazici University)*; Erhan Oztop (Ozyeğin Üniversitesi); Hh X (University); Ahmet Tekden (Boğaziçi Üniversitesi); Muhammet Yunus Seker (Bogazici University); Emre Ugur (Bogazici University)
[132]. Unsupervised Monocular Depth Learning in Dynamic Scenes
Hanhan Li (Google AI); Ariel Gordon (Google Research)*; Hang Zhao (Waymo); Vincent Casser (Waymo); Anelia Angelova (Google)
[133]. BayesRace: Learning to race autonomously using prior experience
Achin Jain (University of Pennsylvania)*; Matthew O'Kelly (University of Pennsylvania); Pratik Chaudhari (University of Pennsylvania); Manfred Morari (University of Pennsylvania)
[134]. Model-Based Inverse Reinforcement Learning from Visual Demonstrations
Neha Das (Facebook AI Research)*; Sarah M.E Bechtle (Max Planck Institute for Intelligent Systems); Todor B Davchev (University of Edinburgh); Dinesh Jayaraman (University of Pennsylvania); Akshara Rai (Facebook); Franziska Meier (Facebook AI Research)
[135]. Deep Reactive Planning in Dynamic Environments
Kei Ota (Mitsubishi Electric Corporation)*; Devesh K Jha (MERL); Daniel Nikovski (); Toshisada Mariyama (Mitsubishi Electric); Tadashi Onishi (Mitsubishi Electric); Yoko Sasaki (National Institute of Advanced Industrial Science and Technology ); Yusuke Yoshiyasu (AIST); Asako Kanezaki (Tokyo Institute of Technology)
[136]. Reactive motion planning with probabilisticsafety guarantees
Yuxiao Chen (California Institute of Technology)*; Ugo Rosolia (California Institute of Technology); Chuchu Fan (MIT); Aaron Ames (Caltech); Richard M Murray (California Institute of Technology)
[137]. Hierarchical Robot Navigation in Novel Environments using Rough 2-D Maps
Chengguang Xu (Northeastern University)*; Christopher Amato (Northeastern University); Lawson L.S. Wong (Northeastern University)
[138]. Visual Imitation Made Easy
Sarah M Young (UC Berkeley)*; Dhiraj P Gandhi (Carnegie Mellon University); Shubham Tulsiani (Facebook AI Research); Abhinav Gupta (CMU/FAIR); Pieter Abbeel (UC Berkeley); Lerrel Pinto (NYU/Berkeley)
[139]. Deep Model Predictive Control for Visual Servoing
Pushkal Katara (Robotics Research Center, IIITH)*; Harish Y V S (IIIT HYDERABAD); AadilMehdi J Sanchawala (International Institute of Information Technology, Hyderabad); Abhinav Gupta (International Institute of Information Technology (IIIT), Hyderabad); Harit Pandya (University of Lincoln); Madhava Krishna (IIIT-Hyderabad); Gourav Kumar (TCS Innovation labs Kolkata); Brojeshwar Bhowmick (Tata Consultancy Services)
[140]. Deep Reinforcement Learning with Population-Coded Spiking Neural Network for Continuous Control
Guangzhi Tang (Rutgers University); Neelesh Kumar (Rutgers University); Raymond Yoo (Rutgers University); Konstantinos Michmizos (Rutgers University)*
[141]. Tolerance-Guided Policy Learning for Adaptable and Transferrable Delicate Industrial Insertion
Changliu Liu (Carnegie Mellon University)*; Chenxi Wang (Carnegie Mellon University); Boshen Niu (Carnegie Mellon University)
[142]. Learning Vision-based Reactive Policies for Obstacle Avoidance
Elie Aljalbout (Technical University of Munich)*; Ji Chen (Technical University of Munich); Konstantin Ritt (Technical University of Munich); Maximilian Ulmer (Technical University of Munich); Sami Haddadin (Technical University of Munich)
[143]. Sampling-based Reachability Analysis: A Random Set Theory Approach with Adversarial Sampling
Thomas J Lew (Stanford University)*; Marco Pavone (Stanford University)
[144]. Dynamics Regularized Features for One Shot Imitation
Sudeep Dasari (Carnegie Mellon University)*; Abhinav Gupta (CMU/FAIR)
[145]. Self-Supervised 3D Keypoint Learning for Ego-Motion Estimation
Jiexiong Tang (KTH Royal Institute of Technology)*; Rareș A Ambruș (Toyota Research Institute); Vitor Guizilini (Toyota Research Institute); Sudeep Pillai (Toyota Research Institute); Hanme Kim (Toyota Research Institute); Patric Jensfelt (Royal Institute of Technology); Adrien Gaidon (Toyota Research Institute)
[146]. Self-supervised Learning of Scene-Graph Representations to Solve Sequential Manipulation Problems
Son Tung Nguyen (University Stuttgart)*; Ozgur S. Oguz (Uni Stuttgart); Valentin N Hartmann (University of Stuttgart); Marc Toussaint (Technische Universität Berlin)
[147]. Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic Reinforcement Learning
Ryan C Julian (University of Southern California)*; Benjamin Swanson (Google); Gaurav Sukhatme (University of Southern California); Sergey Levine (Google); Chelsea Finn (Google Brain); Karol Hausman (Google Brain)
[148]. Using Reinforcement Learning to Shrink Fractional Dimensions for Fun and Profit
Sean Gillen (UCSB)*; Katie Byl (UCSB)
[149]. S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point Clouds
Ran Cheng (Huawei)*; Christopher Agia (University of Toronto); Yuan Ren (Huawei); Xinhai Li (Huawei); Liu Bingbing (Huawei Noah’s Ark Lab, Canada)
[150]. Chaining Behaviors from Data with Model-Free Reinforcement Learning
Avi Singh (UC Berkeley)*; Albert Yu (UC Berkeley); Jonathan H Yang (UC Berkeley); Jesse Zhang (UC Berkeley); Aviral Kumar (UC Berkeley); Sergey Levine (UC Berkeley)
[151]. Differentiable Logic Layer for Rule Guided Trajectory Prediction
Xiao Li (MIT)*; Guy Rosman (MIT); Igor Gilitschenski (Massachusetts Institute of Technology); Jonathan DeCastro (Toyota Research Institute); Cristian-Ioan Vasile (Lehigh University); Sertac Karaman (Massachusetts Institute of Technology); Daniela Rus (MIT CSAIL)
[152]. Attentional Separation-and-Aggregation Network for Self-supervised Dynamic Depth-Pose Learning
Feng Gao (Tsinghua University)*; Jincheng Yu (Tsinghua University); Hao Shen (Meituan-Dianping Group); Yu Wang (Tsinghua University); Huazhong Yang (Tsinghua University)
[153]. Harnessing Distribution Ratio Estimators for Learning Agents with Quality and Diversity
Tanmay Gangwani (University of Illinois, Urbana Champaign)*; Jian Peng (University of Illinois at Urbana-Champaign); Yuan Zhou (UIUC)
[154]. Multiple Topologies Prediction for Navigation at Unsignalized Intersections
Junha Roh (University of Washington); Christoforos Mavrogiannis (University of Washington)*; Rishabh Madan (Indian Institute of Technology Kharagpur); Dieter Fox (NVIDIA Research / University of Washington); Siddhartha Srinivasa (University of Washington)
[155]. Learning from Demonstrations using Signal Temporal Logic
Aniruddh G Puranic (University of Southern California)*; Jyotirmoy Deshmukh (USC); Stefanos Nikolaidis (University of Southern California)
[156]. MATS: An Interpretable Trajectory Forecasting Representation for Planning and Control
Boris Ivanovic (Stanford University)*; Amine Elhafsi (Stanford University); Guy Rosman (Toyota Research Institute); Adrien Gaidon (Toyota Research Institute); Marco Pavone (Stanford University)
[157]. Robust Quadrupedal Locomotion on Sloped Terrains: A Linear Policy Approach
kartik paigwar (iisc)*; sashank tirumala (IISC Bangalore); aditya varma (iisc); Lokesh Krishna (IISc); naman khetan (IISc); Ashitava Ghosal (Indian Institute of Science); Bharadwaj Amrutur (IISc Bangalore); Shalabh Bhatnagar (Indian Institute of Science (IISc) Bangalore); ashish joglekar (IISc); Shishir N Y Kolathaya (IISc)
[158]. Learning Predictive Models for Ergonomic Control of Prosthetic Devices
GEOFFEY M CLARK (Arizona State University)*; Joseph Campbell (Arizona State University); Heni Ben Amor (Arizona State University)
[159]. ContactNets: Learning of Discontinuous Contact Dynamics with Smooth, Implicit Representations
Samuel Pfrommer (University of Pennsylvania); Mathew Halm (University of Pennsylvania)*; Michael Posa (University of Pennsylvania)
[160]. Learning Equality Constraints for Motion Planning on Manifolds
Isabel M Rayas Fernández (University of Southern California)*; Giovanni Sutanto (USC); Peter Englert (University of Southern California); Ragesh Kumar Ramachandran (University of Southern California); Gaurav Sukhatme (University of Southern California)
[161]. Multi-Level Structure vs. End-to-End-Learning in High-Performance Tactile Robotic Manipulatio
Florian Voigt (Technical University of Munich)*; Lars Johannsmeier (Technical University of Munich); Sami Haddadin (Technical University of Munich)
[162]. Learning Arbitrary-Goal Fabric Folding with One Hour of Real Robot Experience
Robert Lee (Queensland University of Technology)*; Vibhavari Dasagi (Queensland University of Technology)
[163]. Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation
Bryan Chen (UC Berkeley)*; Alexander Sax (UC Berkeley); Lerrel Pinto (NYU/Berkeley); Francis Lewis (Stanford); Iro Armeni (Stanford University); Silvio Savarese (Stanford University); Amir Zamir (Swiss Federal Institute of Technology (EPFL)); Jitendra Malik (University of California at Berkeley)
[164]. Towards Autonomous Eye Surgery via Deep Imitation Learning
Ji Woong Kim (Johns Hopkins University)*; Marin Kobilarov (Johns Hopkins University); Peiyao Zhang (Johns Hopkins University); Peter Gehlbach (Johns Hopkins Hospital,); Iulian Iordachita (The Johns Hopkins University)
[165]. Deep Phase Correlation for End-to-End Heterogeneous Sensor Measurements Matching
Zexi Chen (Zhejiang University)*; Xuecheng Xu (Zhejiang University); Yue Wang (Zhejiang University); Rong Xiong (Zhejiang University)